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We find a uniform semiclassicdB5C) wave function describing coherent branched flow through a two-
dimensional electron ga2DEG), a phenomenon recently discovered by direct imaging of the current using
scanned probed microscopiM.A. Topinka, B.J. LeRoy, S.E.J. Shaw, E.J. Heller, R.M. Westervelt, K.D.
Maranowski, and A.C. Gossard, Scier&9, 2323(2000]. The formation of branches has been explained by
classical argumentdM.A. Topinka, B.J. LeRoy, R.M. Westervelt, S.E.J. Shaw, R. Fleischmann, E.J. Heller,
K.D. Maranowski, and A.C. Gossard, Natuteondon 410, 183(2001)], but the SC simulations necessary to
account for the coherence are made difficult by the proliferation of catastrophes in the phase space. In this
paper, expansion in terms of “replacement manifolds” is used to find a uniform SC wave function for a cusp
singularity. The method is then generalized and applied to calculate uniform wave functions for a quantum-map
model of coherent flow through a 2DEG. Finally, the quantum-map approximation is dropped and the method
is shown to work for a continuous-time model as well.

DOI: 10.1103/PhysRevE.67.016211 PACS nunider05.45.Mt, 03.65.Sq, 73.23b

[. INTRODUCTION these “replacement manifolds{RMs), accurate uniform
wave functions are obtained in situations where direct semi-
There is no doubt that detailed understanding of the elecslassical evaluation of the original manifold fails miserably.
tron transport through mesoscopic devices is needed to take Originally, this method was used in special, although
the full advantage of the possibilities of novel electronicscommon cases with an infinite number of oscillations with
these systems offer. On the experimental side, great progreii¢ same phase-space area. Here we demonstrate that this
was made with the use of scanned probe microscidpdgl.  SPecial property is not necessary, and that a similar approach
The theory has kept up: the present knowledge has alreadj@y be used more generally, even in cases with localized
been summarized in several monograw'.sﬂ_ perturbations. In Sec. I, we brleﬂy review the RM method
Quantum effects have become central as devices have bBom Ref.[16] and generalize it. The method is used to uni-
come smaller, cooler, and containing fewer impurities. Reformize a cusp singularity in Sec. lil. In Sec. IV, we apply
markab|y many quantum properties of the electron f|owthe genera”ZEd method to find a uniform wave function in a
through nanostructures can be explained by semiclassicétantum-map model of a 2D electron flow through a sample
(SC) methods. These methods are based on classical miith impurities, where multiple cusp catastrophes are
chanics: the relevant classical manifolds form the “skeleton’Present. The quantum-map approximation is relaxed in Sec.
to which the wave function is attach¢]. The SC methods Vv and it is shown how the replacement manifolds are formed
need to be substituted for classical ones when coherence if3 @ continuous-time model. In Sec. VI, we discuss the merits
maintained over distances on the order of the size of th&f the RM method and relate it to other SC techniques. Be-
device, and when interference effects are playing a role. cause most of this paper is concerned with what happens to
In their simplest form, the SC techniques fail when non-the twisted manifold under the shear of phase space, for
linear classical dynamics create complicated structures ifompleteness the Appendix addresses the other major phase-
phase space. In particular, the SC approximation break8Pace motion: rotation.
down whenever there are multiple contributions to the wave
function within the volume of a single Planck cell. _These Il. REPLACEMENT-MANIEOLD METHOD
so-called catastrophes h_ave been clasdifiet] and various _ AND ITS GENERALIZATION
methods have been devised to correct the SC wave functions
in cases when there exist only several coalescing contribu- The original method, discussed in detail in RgL6],
tions [11-13. In the setting of mesoscopic devices, im- works for wave functions of the form
proved SC methods have been applied e.g., to the scattering
through ballistic microstructure{§4] or to the magnetotrans- w(q)=A(q)e'S@/* (1
port through a resonant tunneling diolds.
In a recent papefl16], we successfully explored a new
approach which worked even in situations with an infinite
number of coalescing contributions, occurring e.g., in the .
case of the homoclinic tangle near an unstable periodic orbit S(a)=S(q) +Aesinf(q), @
[17]. This method is based on the idea of replacing a com-
plicated classical manifold by a series of new simpler manithat can be associated with classical manifolds in which the
folds. When standard semiclassical methods are applied tmomentum depends on the position as
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%+ﬁ6f (g)cosf(q).
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p(a)= )

Here Sy and S are the unperturbed and full action, respec-
tively, e is a parameter controlling the strength of the pertur-

bation,A(q) gives the local weight of the manifold, arq)

is a smooth function defining the shape of the perturbation.

We can expand the wave function as

(4)

Yrm(Q) = 2 An<q>ex;{ Sh(a) |,
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2 contributions to

Y<(p,)
A

and interpret each term of the sum as a contribution from a

classical “replacement” manifoldp,(q)=4S,/dq with a
weight A,=A(q)J,(e) and an action S,(q)=Sy(q)

FIG. 1. Initial manifold of Eq.(8) and areas important to the
semiclassical approximation @f(p).

+n#f(q). The advantage of the RM expansion is appreci-
ated after moving to the momentum representation with Assuming that the weighing of this manifold &(q)

caustics where semiclassical forBAPY(p)exdiS (p)/]
fails while the sum over RMs gives an accurate result.

A slightly different and more general approach than in
Ref.[16] does not require an oscillatory behavior of the ac-

tion. If
S(q)=So(q) + €AS(q), 5
we may Taylor expand the wave function as
w<q)=A(q)exr{ Sol@) 2 = eA&q)}n
=2 Aq() exp[ s ()

corresponding to RMs with weights

AL(@)=A(q)(ie)V/n!

and actions

Sn(a)=Sp(q) —iAnIn[AS(q)/7].

Defining a new functionf(q) by AS(q)=hexdf(q)], the
nth RM action becomes

Sh(Q)=So(q) —iAnf(q). (@)

help the convergence of expansiori6) if
f(gq)=—. This, however, is a natural property of

It will
Iimqﬂm

localized perturbations.

=const= (27h) Y2 the corresponding SC wave function is

Ysd Q)= (2m) Vexpice ©). )
Since for all positions), there exists only a single contribu-
tion to ¢s(q), the SC position wave function is accurate,
¥ ()~ ihs(q), and the momentum wave function is given
by the Fourier transform

¢(p)=(2wﬁ)‘l’2f dq (e PI", (10

Evaluating this integral by the stationary-ph&S&) approxi-
mation yields the SC momentum wave functigg(p). The

SC momentum wave function has two contributions from
two SP points(Fig. 1). The horizontally filled-in area gives
the phase between two contributions; if it becomes smaller
than A, the SP approximation breaks down. Therefore,
¥sc(p) will be singular for all classically allowed momenta
whene<1.

Note that the RM momentump,(q)=2in#q is purely
imaginary for allq and that the corresponding manifold has
no caustics. The uniform momentum wave function is found
as

l/fRM(p)=(27Tﬁ)’1’2f dq e"Pq’hngo A, eiSn(@/

The simplest nontrivial example is obtained by choosing

f(q)=—q° Besides allowing an analytic solution, this
choice will yield exactly the manifold needed in our model
of a 2D electron flow in Sec. IV. Expanding the function
p(q) aroundq=0,

p(q)=—2ehqe C~2¢fi(g®~q)+0O(q%),  (8)

we find that this case falls into the second simplest univer-

sality clasg(called cusp of catastrophe theory9,10,19g (see
Fig. D).

(11)
= 8(p)+ 21 RSPV (12
where
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FIG. 2. An example of a manifold with the double loop structure
that has been sheared-¢) and rotated ¢-d) in phase space. While 2
shear and rotation are generic phase-space motions, here they were
implemented byH =p?/2 andH = p%/2+ /2, respectively. AN
2 / q

o= | dpap)- o a9 RV

We can in general evaluate all RMs foe=1 by the SP
method, although in this case the answer turns out to be t=3tagp !
equal to the exact Fourier transform because the a&ids }
quadratic.

IIl. UNIFORMIZATION OF A CUSP SINGULARITY

The formation of manifolds with a double-loop structure
like that in Fig. 1 is a generic feature of nonlinear Hamil- -
tonian systems. This pattern forms, for instance, whenever an / q
ensemble of trajectories encounters a dip or a bump in the -6 -4 -2 2 4 6
potential surface. Assuming that the particles have energy
greater than the maximum of the potential, the dip or bump
act as a convex or concave lens, respectively. After it is cre- FIG. 3. Evolution of the manifold and the comparison of the
ated, the double loop does not remain stationary: dependingxact(points, RM (solid line) and SC(dashed lingwave functions
on the Hamiltonian, the structure will generally start to sheaiat a time instant beforet&0.25t,,, top), at (t=tg,s, middle),
and rotate in phase spatgee Fig. 2 In most of this paper and after (=3 te, bottom the cusp. In these plots=1 and the
we are concerned with the shear only, but for completenes$!st five RMs were used in E¢20).
in the Appendix we present analytic formulas for the RM
expansion of an original manifold that is arbitrarily rotated m
with respect to the andp axes. tcuspzﬁ (16)

For now imagine that after the manifol@) with two
loops has been formed, the system evolves fréeith the  when a cusp singularityl3] develops(see Fig. 3.

HamiltonianH = p?/2m). The Hamilton’s equations of mo- This problem will be remedied if we apply any of the SC
tion are evolution methodgi.e., integration using the SP approxima-
tion) to the first few RMs instead of directly to the original
p manifold,
q= Ei
'JIRM(q,t):f dq'K¢(q,9";t) ¥rm(q’,0)
p=0, (15 .
= ’ r. iSh(a)/#

resulting in a shear of phase space. The SC position wave ngo f dg'K¢(g,q";t)Aqe . (A7)
function, which was accurate at tinie= 0, will break down
around time where the free-space propagator
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1/2

im " ’ q
ex;{z—m(q —q )2} (18)

n ! m
K¢(q",q";t)= Rt

and att=0, using expressiofb), i

Ay
Vrm(@.0)=(2h) 73 e

In our case, since the RM terms are Gaussian wave packets,
their SC evolution(i.e., SP integrationcan be performed
analytically and is exact, 10

wRM(q,t):(zwﬁ)*”Z}_‘,o %(Hzinﬁt/m)l’2

2
—Nn
conf 3

1+2inAt/m/’ (20

For comparison, the exact quantum evolution was per-
formed by switching to the momentum representation, using FIG. 4. Electron densit}y/(q,t)|? in the model of a 2D electron
the fast Fourier transforntFFT) and trivially evolving the flow (obtained by the exact quantum evolution using the FFT, RMs
wave function there. To find the primitive SC evolution, we were not used For Hamiltonian, see E¢26). In this plot, Vo /v
used a method described by Beeyal. [19]. All the three ~ =—0.0125,e=2.22, and there were 256 impurities.
methods are compared in Fig. 3, showing the classical mani-
fold and corresponding exact, SC, and RM wave function aklready be seen in the classical simulations, Fig. 5 also
a time instant before, at, and after the cusp. shows that scattering by impurities leads to abundant cusp
In the following section, we show that the RM method singularities in phase space, and therefore we expect devia-
can treat situations in which more cusps are continuouslyions in both classical and primitive SC approximations from
formed. However, the advantage of the RMs over the Vanhe exact quantum dynamics.
Vleck propagation or other standard SC methods can be ap- Here we analyze a simple model which can nevertheless
preciated already when the rough region of the potential igxhibit all these properties. Namely, we discuss a 2D system
localized in time and only one or a few cusps are created. Agiith fast electrons, incident along tixeaxis and scattered by
can be seen from Fig. 3, even if the potential is simply flatsmall isolated Gaussian impurities randomly distributed in
after certain time, the region @f in which the SC approxi- the xy plane. Following Topinka and co-workef$,2] who
mation breaks down expands. Unlike the simple SC approxiebserved branched flow in a similar system, we consider the
mation which deteriorates with time, the accuracy of the RMelectron kinetic energy to be much larger than the amplitude
method is preserved after leaving the rough area of the po-
tential: once the Gaussian wave packets corresponding to the
RMs are formed, their number remains constant and their 4
propagation is exact in any potential with up to quadratic
terms(see Fig. 3.

20
IV. QUANTUM-MAP MODEL OF A 2D ELECTRON FLOW
THROUGH A SAMPLE WITH IMPURITIES

We are now prepared to address the problem of the 2D
electron flow in a semiconductor nanostructure with impuri-
ties. The electron transport in such a system is neither strictly
ballistic nor strictly diffusive. Instead, the experiment has o
revealed that reality lies somewhere in between and the phe-
nomenon has been termed “branched flg.” Figures 4
and 5 show, respectively the exact electron der(sibfained
by the exact quantum evolution using the FRRd the rep-
resentative classical trajectories in the model described be-
low. The name of the phenomenon comes from the shape of
the regions with enhanced electron density in Fig. 4 or the 0
corresponding clusters of classical electron trajectories in
Fig. 5. It turns out, however, that these ot correspond to FIG. 5. Representative classical electron trajectories, corre-
the valleys in the potentidl2]. Although the branches can sponding to the electron density in Fig. 4.

0 100 200 t
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of impurities. In fact, we assume the kinetic energy to being an interaction wittjth impurity [20]. Classical dynamics
high enough to justify an impulse approximation: the e|eC-may therefore be expressed in terms of a map,
tron propagates freely between effectively instantaneous

kicks from impurities that affect its momentum but not posi- dj+1=9;+p;,
tion. Moreover, while the transverse momentum changes by
a small impulse from an impurity, the longitudinal momen- pj+1=pj+Ap(qj+1,q(j+l)), (27)

tum remains effectively constant, allowing the transforma-

tion of the original 2D problem into a 1D problem with a where subscripts denote time in unitsand the change of
time-dependent Hamiltonian. To be precise, we start with gnomentum is

2D Hamiltonian

. * oH V . PN ())
H( ) PX+ Py é Vv Ap(q,q(”%_f dtﬁzzﬁ Fo(q—q(”)e (a=a?%
X! H ’ = + -
Y, Px py = 0 (28)
(x—x00)2+ (y—y))? implying that a single impurity transforms a momentum state
xexg - a2 ' exactly into the two-loop manifol@) from Sec. Il. We can
read off the loop area from E§28) to be \/x|V|/v.
(21 In quantum mechanics, another important parameter en-
wheren, a, andx®, y(i) are respectively the number, radius, Lers: f. Accuracy of the SC approximation will depend on
. 4 o ow
and coordinates of the centers of the impurities. We assume
that |V |
. e=\m—= (29
X=py/m~constv, (22
wherev is the initial velocity of the electron. This is justified compares to 1. In the impulse approximation, the exact quan-
when tum dynamics is described by a quantum map
mo?/|Vo|> Vn. (23) |4 +1)=Ul;), (30)

For simplicity of calculations, we distribute the impurities where the subscript again denotes time in unigdU is the
randomly in they direction, but regularly along theaxis, at  one-step evolution operator
intervalsv 7. Each electron will be affected by a single im-

purity at a time if i (1 i (=
U=Texp(—gJHdt)~exr<—%J th)
vr>a. (24) 0 -
H 2 ; 2
To simplify notation, we take&, =, andm to be respectively % exr{ ! p_) =explie eqz)exp( ! p_)
the units of length, time, and mass. Then we define dimen- h 2 h 2
sionless quantitiegj=y/a, p=p,7/ma, etc. While we do (31)

not change the names of all other quantities, it should be
understqod that they have been made dimensionless as wetlhe easiest way to evolve a quantum state numerically is to
After this rescaling, we obtain an effective, 1D time- use the FFT to switch back and forth between position and

dependent Hamiltonian momentum representations and apply the impulsive pdaut of
N in g representation and the kinetic partfin p representa-
p? i . tion.
= C(a—ain2_,,2(+_i)2
H(q,p.t) = Z o exd —(q—qg¥’) —v(t—=))7]. We now demonstrate that not only do the replacement

(25)  manifolds lack singularitiegpresent in the classical and SC

analysig, but that they can also correctly reproduce all the

In this section we consider that the change of the transversdetails of the exact quantum solution. When the next impu-
momentum due to the impurity is instantaneous, yielding aity is encountered, each wave packet develops a loop in its
further simplification, represented by a periodically “kicked” phase-space representation which would soon lead to a new

Hamiltonian cusp singularity. We therefore replace it with a series of sim-

pler manifolds, as in Sec. lll, avoiding this problem.

p” ~(q-qiy2 In our model we exploit the fact that the RM terms are

H(a,p,0)~ +\/— E o(t—j). (26) Gaussian wave packets, allowing their analytic evaluation

with only a slight generalization of the calculations in Sec.

(A generalized analysis without this approximation is pre-lll. Each term in the RM sum at timehas a Gaussian form,
sented in the following sectionin the impulse approxima- 5
tion, classical positiom of an electron does not change dur- Yi(q)=c e b1 Re b>0. (32
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2| p/eh t=0 2|2 tion for e=1.11 up to a time when eight impurities are en-
1 countered. Four RMs are used to replace each incident wave
q packet at each impurity. Although the classical manifold
., 10 20 30 (also shown in the figupehas developed many structures
q smaller tharvi, the agreement remains excellent.
-2 . 10 20 30
) manifold t=2
L V. CONTINUOUS VERSION OF THE MODEL
ﬁ /\ In certain situations, we may be interested in a detailed
1 RS ——«/\/\/\Mv— evolution of the electron wave function during the collision
- — — — with the impurity, rather thar_l just in the appearance of the
) =4 wave function after the collision. Below, we present an ana-
Iytical solution of this problem in case that the electrons
' move slowly enough that the collision cannot be considered
30 instantaneous, but fast enough that the transverse displace-
-1 W\/\N ment of the electrons does not change significantly during
-2 1o 20 30 the collision. (For even slower electrons, the coupling be-
2 t=6 tween the longitudinal and transverse motion during the col-
1 3 lision would prevent us from obtaining closed analytic ex-
2 pressions presented below. However, we could still find the
. S WW\ replacement manifolds numericajly.
To simplify the notation, we consider only a single impu-
-2 =8 10 20 30 rity located at positiomg=0 and timet=0, so that the ef-
2 5 fective 1D time-dependent HamiltonidB@5) becomes
1 , .
30 4 — " n2 2,242
o 1 H(q,p,t)= 5P +Vo exp— g —vt9). (395
-2 10 20 30

Assuming thatg changes little during the collision we find
FIG. 6. Evolution of the manifoldleft) and comparison of the that the momentum change is

corresponding exadjpointy and RM (solid line) wave functions
(right). The SC wave function is not shown since already at time
t=6 it has caustic singularities almost everywhere alongjthgis.
In this plot,Vy/v=—0.0625 ande=1.11 was chosen to show that
the RM method is not restricted t©<1. Only the first four RM
terms were used in every stép4). Two new impurities were en-
countered at each time interval between the consecutive rows.

t ) t JH
Ap=p(h-p(-=)= [ _avp)=- [ av’s
— —o0 q
t
=2qv0e*q2f dt’exp(—v?t’?)

- “1lqa—0°
After the kinetic propagation, just before next impurity is Voo™ tqe” 1+ erf(ut) ). (36

encountered, At time t= —o0, we start with a momentum eigenstate with

i momentump=0,
¢j+1(q>=JKf(q'q';l)‘”j(q')dq, Y(p,t=—=)=5(p)
p.t===)=ap),

c [{ia2/2+ aq—bg?

= )= —12
T (1r2ib) ST 120 or y(q,t=—2)=(2mh) 37)

). (33
represented by a horizontal line in phase space. As the elec-
tron wave passes through the impurity, a double loop devel-
ops in the manifoldcurve representing the wave function.

] The position representation of the SC wave function at time
tis (see, e.g., Ref.19))

After receiving an impulse from theg ¢ 1)st impurity,

Ui 1(@) = (q)exiee @ a7

~ S o(ien .
=Pja(a) 2, ——exd —n(a-ql )7, dql?? i
o =(2mh) " V— exp{— S+S)|,
(34) P(as 1) =(27h) da; 7 (S1+S2)
Each term in this sum gives rise to a new Gaussian wavehereq; is the position at timeé’ = —< that evolves to po-

packet of the form(32), which is propagated further in the sitiongs at timet’=t. In our approximatiorg;~q;, the Van
same manner. Vleck determinanfdq;/dgs|=1, which is the reason that
Figure 6 shows a comparison of the exact and RM evoluthe SC position wave function remains accurate throughout
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the collision.S; is the action along the trajectory of a refer- wave functions long after the primitive semiclassical ap-
ence pointg=x on the manifold, proximation breaks down.
Putting aside the accuracy, the RM approach may seem
v, R intimidating from a numerical point of view because as de-
S;= medt L[x(t"),x(t"),t"]. scribed, the algorithm has exponential complexity. But let
us remember that the same—exponential proliferation of
S, is the reduced action along the evolved manifold at time contributions—is true of the primitive semiclassical solution
which, however, would give a completely wrong result in our
a; case! Moreover, there appear to be at least two possible ways
52=f dg; pi(ay) to speed up the RM calculations. Fex 1 , we could prune
Xt the contributions to keep only terms up to a certain “total”
[p/(q) is the momentum dependence on position at tifne power ofe (which is different from keeping all terms up to a
i R given power at each impurityOr we could consolidate the
For convenience, we choosg—=)=—, giving X(t)=0  nymper of wave packets after certain time by projecting on a
and x(t)=const=—«. Since V(x=-=,1)=0, also gjjtaple basighecause the exponentially growing number of

L(x,x,t)=0 andS,=0. Finally, sincep;— _..(q)=0, RM terms is obviously over completand starting the RM
propagation afresh.
S,= fq dq’Ap(q’)z\/;V v 1+erf(vt)] The question of computational complexity would not
—w ! 0 even arise if we were interested in a system where the elec-

1 tron wave hits only one or a few impurities and after that
R 1t g2 propagates in a relatively smooth potential. The small num-
% fﬂcdq g'e t = Vo 2[1+erf(vt)]e T ber of Gaussian wave packets spawned at the last impurity
would suffice for all subsequent times and the accuracy of
the approximation would be preserved. As discussed in Sec.
I11, this should be contrasted with the standard SC approxi-
mation which deteriorates even when a manifold with a
i 1 single cusp propagates in a flat potentisde Fig. 3.
zpsc(q,t)=(2wh)‘1’2exp{%\/gvov‘1§[l Besides providing a uniform wave function the RM
method gives an intuitive explanation of how quantum me-

(39

The semiclassical position wave function at tinis

5 chanics smooths out the classical detail. Moreover, in the
+erf(vt)]e” ;. (39  present case of RMs with a complex momentum, the method
appears to provide a link between the semiclassical perturba-
Remembering that\/;\/ovflhfl: e and that erfe-)= tion approximationg21] and various Gaussian wave packet

+0, we can easily check that this general expression givelechniques22—24, because replacement manifolds in the
the correct limiting formg37) and (9) at timest=— and expansion(19) are nothing but Gaussian wave pacl_<ets. One
t=c0, respectively. The primitive SC momentum wave func-advantage of the RM method over other Gaussian wave-

tion [obtained by the SPA of the Fourier transform of Eq.paCth m_et_hods lies in that it gives an analytic expre;sion for
(39)] fails for the same reasons as in Sec. II. If we expancfhe coefficients of the wave packets. Other Gaussian wave

1) in t fRM Iv the SPA directlv to the Packet methodssuch as the frozen Gaussiaf@2], the
Ysda.t ' erms o s, and apply the S d_lrec y o e”ﬁerman-KIuk propagatdr23], and the full multiple spawn-
. ) B ing [24]) rely on variational orad hoc methods to obtain
expression(1) is an extra factofz[1+erf(wt)]}" for RM  ooimal wave packet coefficients numerically.
coefficientsA,, or A, (13), e.g., Finally, although the RM method has not yet been fully
generalized, the large variety of probleits this paper and

- m(e" 1 " in Ref. [16]) it can solve suggests that the meth@a at
A”_Za-rﬁ n! : 5[1+erf(ut)] ' least,the idea is more general.
Since the expression in the large parentheses goes smoothly ACKNOWLEDGMENTS

from O att=—o to 1 att=o, we see that the replacement
manifolds emerge even before the center of the impurity i§:
encountered. However, the weight of the manifolds with
larger n becomes appreciable only after the impurity is
passed.

This research was supported by the National Science
oundation under Grant No. CHE-0073544 and by the Insti-
tute for Theoretical Atomic and Molecular Physics. One of
us(J. V.) would like to acknowledge helpful discussions with
D. Cohen and A. Mody.

VI. DISCUSSION AND CONCLUSIONS APPENDIX: REPLACEMENT-MANIFOLD EXPANSION
IN AN ARBITRARILY ROTATED

We have shown that the RM method is not limited to COORDINATE SYSTEM

infinitely repeating phase-space structures if we allow the
replacement manifolds to have complex momenta. Propaga- We show here that the RM expansion for the manifold
tion of replacement manifolds gives uniform semiclassicalstudied in this paper can be found analytically in an arbi-
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P The reduced action is
P n=2 .
- 5(Q)- [ dQP(Q)- 507 rta,—).  (Ad)
T A Q
AT 0 A The weight of thenth RM in the Q representation is the
1 weight in theq representation multiplied by the ratios of the
T projections on they and Q axes, respectively. Including the
" Maslov indexu (0 or 1), we find the correchth RM contri-
bution
FIG. 7. Original and rotated coord Q)= — (ie)"| cosa, [**
. 7. Original and rotated coordinate systems. =
g Y R ok Nl |cosa— o))
trarily rotated coordinate system. In other words, the method i
can be readily applied not just in tlgeor p representations, xexp{—Qz tan a,— ¢) — i upm/2|.
but in any mixed representation given by a canonical trans- 2h
formation (see Fig. 7 (AB)
Q=qcos¢+psing, After simplification, the full RM expansion becomes

P=—qsin¢+p cosd. (A1) < 1 G (i)
In the original coordinate systemg( p), replacement l’/jRM(Q)_nZO ‘/’RM’“(Q)_WHZO n!
manifolds are straight lines

|cose

2n+itan¢/(2h)

, ; =12
pn(d) =2infiq=qtana, (A2) +2inf sing| eXF{‘Q 1+ 2in% tang

(where a, is compley. In the rotated coordinatex)( P),

the replacement manifolds are given by the relationship —lpnml2]. (A6)

2inh—tang It is easy to check that this general result correctly reduces to
Pr(Q)=Qtan(ay=4)=Q 1+2inAtang’ (A3) expression$l1) or (19) when¢ = 7/2 or =0, respectively.
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