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Uniform semiclassical wave function for coherent two-dimensional electron flow
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We find a uniform semiclassical~SC! wave function describing coherent branched flow through a two-
dimensional electron gas~2DEG!, a phenomenon recently discovered by direct imaging of the current using
scanned probed microscopy@M.A. Topinka, B.J. LeRoy, S.E.J. Shaw, E.J. Heller, R.M. Westervelt, K.D.
Maranowski, and A.C. Gossard, Science289, 2323~2000!#. The formation of branches has been explained by
classical arguments@M.A. Topinka, B.J. LeRoy, R.M. Westervelt, S.E.J. Shaw, R. Fleischmann, E.J. Heller,
K.D. Maranowski, and A.C. Gossard, Nature~London! 410, 183 ~2001!#, but the SC simulations necessary to
account for the coherence are made difficult by the proliferation of catastrophes in the phase space. In this
paper, expansion in terms of ‘‘replacement manifolds’’ is used to find a uniform SC wave function for a cusp
singularity. The method is then generalized and applied to calculate uniform wave functions for a quantum-map
model of coherent flow through a 2DEG. Finally, the quantum-map approximation is dropped and the method
is shown to work for a continuous-time model as well.

DOI: 10.1103/PhysRevE.67.016211 PACS number~s!: 05.45.Mt, 03.65.Sq, 73.23.2b
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I. INTRODUCTION

There is no doubt that detailed understanding of the e
tron transport through mesoscopic devices is needed to
the full advantage of the possibilities of novel electron
these systems offer. On the experimental side, great prog
was made with the use of scanned probe microscopes@1,3,4#.
The theory has kept up: the present knowledge has alre
been summarized in several monographs@5–7#.

Quantum effects have become central as devices have
come smaller, cooler, and containing fewer impurities. R
markably many quantum properties of the electron fl
through nanostructures can be explained by semiclas
~SC! methods. These methods are based on classical
chanics: the relevant classical manifolds form the ‘‘skeleto
to which the wave function is attached@8#. The SC methods
need to be substituted for classical ones when coheren
maintained over distances on the order of the size of
device, and when interference effects are playing a role.

In their simplest form, the SC techniques fail when no
linear classical dynamics create complicated structures
phase space. In particular, the SC approximation bre
down whenever there are multiple contributions to the wa
function within the volume of a single Planck cell. The
so-called catastrophes have been classified@9,10# and various
methods have been devised to correct the SC wave func
in cases when there exist only several coalescing contr
tions @11–13#. In the setting of mesoscopic devices, im
proved SC methods have been applied e.g., to the scatte
through ballistic microstructures@14# or to the magnetotrans
port through a resonant tunneling diode@15#.

In a recent paper@16#, we successfully explored a ne
approach which worked even in situations with an infin
number of coalescing contributions, occurring e.g., in
case of the homoclinic tangle near an unstable periodic o
@17#. This method is based on the idea of replacing a co
plicated classical manifold by a series of new simpler ma
folds. When standard semiclassical methods are applie
1063-651X/2003/67~1!/016211~8!/$20.00 67 0162
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these ‘‘replacement manifolds’’~RMs!, accurate uniform
wave functions are obtained in situations where direct se
classical evaluation of the original manifold fails miserab

Originally, this method was used in special, althou
common cases with an infinite number of oscillations w
the same phase-space area. Here we demonstrate tha
special property is not necessary, and that a similar appro
may be used more generally, even in cases with locali
perturbations. In Sec. II, we briefly review the RM metho
from Ref. @16# and generalize it. The method is used to u
formize a cusp singularity in Sec. III. In Sec. IV, we app
the generalized method to find a uniform wave function in
quantum-map model of a 2D electron flow through a sam
with impurities, where multiple cusp catastrophes a
present. The quantum-map approximation is relaxed in S
V and it is shown how the replacement manifolds are form
in a continuous-time model. In Sec. VI, we discuss the me
of the RM method and relate it to other SC techniques. B
cause most of this paper is concerned with what happen
the twisted manifold under the shear of phase space,
completeness the Appendix addresses the other major ph
space motion: rotation.

II. REPLACEMENT-MANIFOLD METHOD
AND ITS GENERALIZATION

The original method, discussed in detail in Ref.@16#,
works for wave functions of the form

c~q!5A~q!eiS(q)/\ ~1!

with

S~q!5S0~q!1\e sin f ~q!, ~2!

that can be associated with classical manifolds in which
momentum depends on the position as
©2003 The American Physical Society11-1
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J. VANÍČEK AND E. J. HELLER PHYSICAL REVIEW E67, 016211 ~2003!
p~q!5
]S

]q
5

]S0

]q
1\e f 8~q!cosf ~q!. ~3!

Here S0 and S are the unperturbed and full action, respe
tively, e is a parameter controlling the strength of the pert
bation,A(q) gives the local weight of the manifold, andf (q)
is a smooth function defining the shape of the perturbati

We can expand the wave function as

cRM~q!5 (
n52`

`

An~q!expF i

\
Sn~q!G , ~4!

and interpret each term of the sum as a contribution from
classical ‘‘replacement’’ manifoldpn(q)5]Sn /]q with a
weight An5A(q)Jn(e) and an action Sn(q)5S0(q)
1n\ f (q). The advantage of the RM expansion is appre
ated after moving to the momentum representation w
caustics where semiclassical form(Aj

SC(p)exp@iSj
SC(p)/\#

fails while the sum over RMs gives an accurate result.
A slightly different and more general approach than

Ref. @16# does not require an oscillatory behavior of the a
tion. If

S~q!5S0~q!1eDS~q!, ~5!

we may Taylor expand the wave function as

c~q!5A~q!expF i

\
S0~q!G (

n50

`
1

n! F i

\
eDS~q!Gn

5 (
n50

`

An~q!expF i

\
Sn~q!G ~6!

corresponding to RMs with weights

An~q!5A~q!~ i e!n/n!

and actions

Sn~q!5S0~q!2 i\n ln@DS~q!/\#.

Defining a new functionf (q) by DS(q)[\exp@f(q)#, the
nth RM action becomes

Sn~q!5S0~q!2 i\n f~q!. ~7!

It will help the convergence of expansion~6! if
lim

q→6`
f (q)52`. This, however, is a natural property o

localized perturbations.
The simplest nontrivial example is obtained by choos

f (q)52q2. Besides allowing an analytic solution, th
choice will yield exactly the manifold needed in our mod
of a 2D electron flow in Sec. IV. Expanding the functio
p(q) aroundq50,

p~q!522e\qe2q2
'2e\~q32q!1O~q4!, ~8!

we find that this case falls into the second simplest univ
sality class~called cusp! of catastrophe theory@9,10,18# ~see
Fig. 1!.
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Assuming that the weighing of this manifold isA(q)
5const5(2p\)21/2, the corresponding SC wave function

cSC~q!5~2p\!21/2exp~ i ee2q2
!. ~9!

Since for all positionsq, there exists only a single contribu
tion to cSC(q), the SC position wave function is accurat
c(q)'cSC(q), and the momentum wave function is give
by the Fourier transform

c~p!5~2p\!21/2E dq cSC~q!e2 ipq/\. ~10!

Evaluating this integral by the stationary-phase~SP! approxi-
mation yields the SC momentum wave functioncSC(p). The
SC momentum wave function has two contributions fro
two SP points~Fig. 1!. The horizontally filled-in area gives
the phase between two contributions; if it becomes sma
than \, the SP approximation breaks down. Therefo
cSC(p) will be singular for all classically allowed moment
whene<1.

Note that the RM momentumpn(q)52in\q is purely
imaginary for allq and that the corresponding manifold h
no caustics. The uniform momentum wave function is fou
as

cRM~p!5~2p\!21/2E dq e2 ipq/\ (
n50

`

AneiSn(q)/\

5d~p!1
Ap

2p\ (
n51

`
~ i e!n

n!
n21/2 expS 2p2

4n\2D
~11!

5d~p!1 (
n51

`

ÃneiS̃n(p)/\, ~12!

where

Ãn5
Ap

2p\

~ i e!n

n!
n21/2, ~13!

FIG. 1. Initial manifold of Eq.~8! and areas important to th
semiclassical approximation ofc(p).
1-2



b

re
il-
r
th
rg

m
re

di
ea

es
M

ed

-

a

C
a-
l

re

w

he

UNIFORM SEMICLASSICAL WAVE FUNCTION FOR . . . PHYSICAL REVIEW E 67, 016211 ~2003!
S̃n~p!52E dp qn~p!5
ip2

4n\
. ~14!

We can in general evaluate all RMs forn>1 by the SP
method, although in this case the answer turns out to
equal to the exact Fourier transform because the actionSn is
quadratic.

III. UNIFORMIZATION OF A CUSP SINGULARITY

The formation of manifolds with a double-loop structu
like that in Fig. 1 is a generic feature of nonlinear Ham
tonian systems. This pattern forms, for instance, wheneve
ensemble of trajectories encounters a dip or a bump in
potential surface. Assuming that the particles have ene
greater than the maximum of the potential, the dip or bu
act as a convex or concave lens, respectively. After it is c
ated, the double loop does not remain stationary: depen
on the Hamiltonian, the structure will generally start to sh
and rotate in phase space~see Fig. 2!. In most of this paper
we are concerned with the shear only, but for completen
in the Appendix we present analytic formulas for the R
expansion of an original manifold that is arbitrarily rotat
with respect to theq andp axes.

For now imagine that after the manifold~8! with two
loops has been formed, the system evolves freely~with the
HamiltonianH5p2/2m). The Hamilton’s equations of mo
tion are

q̇5
p

m
,

ṗ50, ~15!

resulting in a shear of phase space. The SC position w
function, which was accurate at timet50, will break down
around time

FIG. 2. An example of a manifold with the double loop structu
that has been sheared (a-c) and rotated (c-d) in phase space. While
shear and rotation are generic phase-space motions, here they
implemented byH5p2/2 andH5p2/21q2/2, respectively.
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~16!

when a cusp singularity@13# develops~see Fig. 3!.
This problem will be remedied if we apply any of the S

evolution methods~i.e., integration using the SP approxim
tion! to the first few RMs instead of directly to the origina
manifold,

cRM~q,t !5E dq8K f~q,q8;t !cRM~q8,0!

5 (
n50

` E dq8K f~q,q8;t !AneiSn(q)/\, ~17!

where the free-space propagator

ere

FIG. 3. Evolution of the manifold and the comparison of t
exact~points!, RM ~solid line! and SC~dashed line! wave functions
at a time instant before (t50.25 tcusp, top!, at (t5tcusp, middle!,
and after (t53 tcusp, bottom! the cusp. In these plots,e51 and the
first five RMs were used in Eq.~20!.
1-3
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K f~q9,q8;t !5S m

2p\ i t D
1/2

expF im

2\t
~q92q8!2G ~18!

and att50, using expression~6!,

cRM~q,0!5~2p\!21/2(
n50

`
~ i e!n

n!
e2nq2

. ~19!

In our case, since the RM terms are Gaussian wave pac
their SC evolution~i.e., SP integration! can be performed
analytically and is exact,

cRM~q,t !5~2p\!21/2(
n50

`
~ i e!n

n!
~112in\t/m!1/2

3expS 2nq2

112in\t/mD . ~20!

For comparison, the exact quantum evolution was p
formed by switching to the momentum representation, us
the fast Fourier transform~FFT! and trivially evolving the
wave function there. To find the primitive SC evolution, w
used a method described by Berryet al. @19#. All the three
methods are compared in Fig. 3, showing the classical m
fold and corresponding exact, SC, and RM wave function
a time instant before, at, and after the cusp.

In the following section, we show that the RM metho
can treat situations in which more cusps are continuou
formed. However, the advantage of the RMs over the V
Vleck propagation or other standard SC methods can be
preciated already when the rough region of the potentia
localized in time and only one or a few cusps are created
can be seen from Fig. 3, even if the potential is simply
after certain time, the region ofq in which the SC approxi-
mation breaks down expands. Unlike the simple SC appr
mation which deteriorates with time, the accuracy of the R
method is preserved after leaving the rough area of the
tential: once the Gaussian wave packets corresponding to
RMs are formed, their number remains constant and t
propagation is exact in any potential with up to quadra
terms~see Fig. 3!.

IV. QUANTUM-MAP MODEL OF A 2D ELECTRON FLOW
THROUGH A SAMPLE WITH IMPURITIES

We are now prepared to address the problem of the
electron flow in a semiconductor nanostructure with impu
ties. The electron transport in such a system is neither str
ballistic nor strictly diffusive. Instead, the experiment h
revealed that reality lies somewhere in between and the
nomenon has been termed ‘‘branched flow@2#.’’ Figures 4
and 5 show, respectively the exact electron density~obtained
by the exact quantum evolution using the FFT! and the rep-
resentative classical trajectories in the model described
low. The name of the phenomenon comes from the shap
the regions with enhanced electron density in Fig. 4 or
corresponding clusters of classical electron trajectories
Fig. 5. It turns out, however, that these donot correspond to
the valleys in the potential@2#. Although the branches ca
01621
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already be seen in the classical simulations, Fig. 5 a
shows that scattering by impurities leads to abundant c
singularities in phase space, and therefore we expect de
tions in both classical and primitive SC approximations fro
the exact quantum dynamics.

Here we analyze a simple model which can neverthe
exhibit all these properties. Namely, we discuss a 2D sys
with fast electrons, incident along thex axis and scattered by
small isolated Gaussian impurities randomly distributed
the xy plane. Following Topinka and co-workers@1,2# who
observed branched flow in a similar system, we consider
electron kinetic energy to be much larger than the amplitu

FIG. 4. Electron densityuc(q,t)u2 in the model of a 2D electron
flow ~obtained by the exact quantum evolution using the FFT, R
were not used!. For Hamiltonian, see Eq.~26!. In this plot, V0 /v
520.0125,e52.22, and there were 256 impurities.

FIG. 5. Representative classical electron trajectories, co
sponding to the electron density in Fig. 4.
1-4
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UNIFORM SEMICLASSICAL WAVE FUNCTION FOR . . . PHYSICAL REVIEW E 67, 016211 ~2003!
of impurities. In fact, we assume the kinetic energy to
high enough to justify an impulse approximation: the ele
tron propagates freely between effectively instantane
kicks from impurities that affect its momentum but not po
tion. Moreover, while the transverse momentum changes
a small impulse from an impurity, the longitudinal mome
tum remains effectively constant, allowing the transform
tion of the original 2D problem into a 1D problem with
time-dependent Hamiltonian. To be precise, we start wit
2D Hamiltonian

H~x,y,px ,py!5
px

21py
2

2m
1(

j 51

n

V0

3expF2
~x2x( j )!21~y2y( j )!2

a2 G ,

~21!

wheren, a, andx( j ), y( j ) are respectively the number, radiu
and coordinates of the centers of the impurities. We ass
that

ẋ5px /m'const5v, ~22!

wherev is the initial velocity of the electron. This is justifie
when

mv2/uV0u@An. ~23!

For simplicity of calculations, we distribute the impuritie
randomly in they direction, but regularly along thex axis, at
intervalsvt. Each electron will be affected by a single im
purity at a time if

vt@a. ~24!

To simplify notation, we takea, t, andm to be respectively
the units of length, time, and mass. Then we define dim
sionless quantitiesq5y/a, p5pyt/ma, etc. While we do
not change the names of all other quantities, it should
understood that they have been made dimensionless as
After this rescaling, we obtain an effective, 1D tim
dependent Hamiltonian

H~q,p,t !5
p2

2
1(

j 51

n

V0 exp@2~q2q( j )!22v2~ t2 j !2#.

~25!

In this section we consider that the change of the transv
momentum due to the impurity is instantaneous, yieldin
further simplification, represented by a periodically ‘‘kicked
Hamiltonian

H~q,p,t !'
p2

2
1Ap

V0

v (
j 51

n

e2(q2q( j ))2
d~ t2 j !. ~26!

~A generalized analysis without this approximation is p
sented in the following section.! In the impulse approxima
tion, classical positionq of an electron does not change du
01621
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ing an interaction withj th impurity @20#. Classical dynamics
may therefore be expressed in terms of a map,

qj 115qj1pj ,

pj 115pj1Dp~qj 11 ,q( j 11)!, ~27!

where subscripts denote time in unitst and the change o
momentum is

Dp~q,q( j )!'2E
2`

`

dt
]H

]q
52Ap

V0

v
~q2q( j )!e2(q2q( j ))2

,

~28!

implying that a single impurity transforms a momentum st
exactly into the two-loop manifold~8! from Sec. II. We can
read off the loop area from Eq.~28! to beApuV0u/v.

In quantum mechanics, another important parameter
ters: \. Accuracy of the SC approximation will depend o
how

e5Ap
uV0u
v\

~29!

compares to 1. In the impulse approximation, the exact qu
tum dynamics is described by a quantum map

uc j 11&5Uuc j&, ~30!

where the subscript again denotes time in unitst andU is the
one-step evolution operator

U5T expS 2
i

\E0

1

H dtD'expS 2
i

\E2`

`

V dtD
3expS 2

i

\

p2

2 D5exp~ i e e2q2
!expS 2

i

\

p2

2 D .

~31!

The easiest way to evolve a quantum state numerically i
use the FFT to switch back and forth between position a
momentum representations and apply the impulsive part oU
in q representation and the kinetic part ofU in p representa-
tion.

We now demonstrate that not only do the replacem
manifolds lack singularities~present in the classical and S
analysis!, but that they can also correctly reproduce all t
details of the exact quantum solution. When the next im
rity is encountered, each wave packet develops a loop in
phase-space representation which would soon lead to a
cusp singularity. We therefore replace it with a series of s
pler manifolds, as in Sec. III, avoiding this problem.

In our model we exploit the fact that the RM terms a
Gaussian wave packets, allowing their analytic evaluat
with only a slight generalization of the calculations in Se
III. Each term in the RM sum at timej has a Gaussian form

c j~q!5c eaq2bq2
, Re b.0. ~32!
1-5
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After the kinetic propagation, just before next impurity
encountered,

c̃ j 11~q!5E K f~q,q8;1!c j~q8!dq8

5
c

~112ib !1/2
expS ia2/21aq2bq2

112ib D . ~33!

After receiving an impulse from the (j 11)st impurity,

c j 11~q!5c̃ j 11~q!exp@ i e e2(q2q( j 11))2
#

5c̃ j 11~q! (
n50

`
~ i e!n

n!
exp@2n~q2q( j 11)!2#.

~34!

Each term in this sum gives rise to a new Gaussian w
packet of the form~32!, which is propagated further in th
same manner.

Figure 6 shows a comparison of the exact and RM evo

FIG. 6. Evolution of the manifold~left! and comparison of the
corresponding exact~points! and RM ~solid line! wave functions
~right!. The SC wave function is not shown since already at ti
t56 it has caustic singularities almost everywhere along theq axis.
In this plot,V0 /v520.0625 ande51.11 was chosen to show tha
the RM method is not restricted toe,1. Only the first four RM
terms were used in every step~34!. Two new impurities were en-
countered at each time interval between the consecutive rows.
01621
e
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tion for e51.11 up to a time when eight impurities are e
countered. Four RMs are used to replace each incident w
packet at each impurity. Although the classical manifo
~also shown in the figure! has developed many structure
smaller than\, the agreement remains excellent.

V. CONTINUOUS VERSION OF THE MODEL

In certain situations, we may be interested in a detai
evolution of the electron wave function during the collisio
with the impurity, rather than just in the appearance of
wave function after the collision. Below, we present an a
lytical solution of this problem in case that the electro
move slowly enough that the collision cannot be conside
instantaneous, but fast enough that the transverse disp
ment of the electrons does not change significantly dur
the collision. ~For even slower electrons, the coupling b
tween the longitudinal and transverse motion during the c
lision would prevent us from obtaining closed analytic e
pressions presented below. However, we could still find
replacement manifolds numerically.!

To simplify the notation, we consider only a single imp
rity located at positionq50 and timet50, so that the ef-
fective 1D time-dependent Hamiltonian~25! becomes

H~q,p,t !5
1

2
p21V0 exp~2q22v2t2!. ~35!

Assuming thatq changes little during the collision we fin
that the momentum change is

Dp5p~ t !2p~2`!5E
2`

t

dt8ṗ~ t8!52E
2`

t

dt8
]H

]q

52qV0e2q2E
2`

t

dt8exp~2v2t82!

5ApV0v21qe2q2
@11erf~vt !#. ~36!

At time t52`, we start with a momentum eigenstate wi
momentump50,

c~p,t52`!5d~p!,

or c~q,t52`!5~2p\!21/2 ~37!

represented by a horizontal line in phase space. As the e
tron wave passes through the impurity, a double loop de
ops in the manifold~curve! representing the wave function
The position representation of the SC wave function at ti
t is ~see, e.g., Ref.@19#!

c~qf ,t !5~2p\!21/2Udqi

dqf
U1/2

expF i

\
~S11S2!G ,

whereqi is the position at timet852` that evolves to po-
sition qf at timet85t. In our approximationqf'qi , the Van
Vleck determinantudqi /dqf u51, which is the reason tha
the SC position wave function remains accurate through

e

1-6
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UNIFORM SEMICLASSICAL WAVE FUNCTION FOR . . . PHYSICAL REVIEW E 67, 016211 ~2003!
the collision.S1 is the action along the trajectory of a refe
ence pointq5x on the manifold,

S15E
2`

t

dt8L@x~ t8!,ẋ~ t8!,t8#.

S2 is the reduced action along the evolved manifold at timt,

S25E
xf

qt
dqt8pt~qt8!

@pt(q) is the momentum dependence on position at timet].
For convenience, we choosex(2`)52`, giving ẋ(t)50
and x(t)5const52`. Since V(x52`,t)50, also
L(x,ẋ,t)50 andS150. Finally, sincept52`(q)50,

S25E
2`

q

dq8Dpt~q8!5ApV0v21@11erf~vt !#

3E
2`

q

dq8q8e2q82
5ApV0v21

1

2
@11erf~vt !#e2q2

.

~38!

The semiclassical position wave function at timet is

cSC~q,t !5~2p\!21/2expH i

\
ApV0v21

1

2
@1

1erf~vt !#e2q2J . ~39!

Remembering thatApV0v21\215e and that erf(6`)5
6`, we can easily check that this general expression g
the correct limiting forms~37! and ~9! at timest52` and
t5`, respectively. The primitive SC momentum wave fun
tion @obtained by the SPA of the Fourier transform of E
~39!# fails for the same reasons as in Sec. II. If we expa
cSC(q,t) in terms of RMs, and apply the SPA directly to th
RMs, we find an accurate answer. The only difference fr

expression~11! is an extra factor$ 1
2 @11erf(vt)#%n for RM

coefficientsAn or Ãn ~13!, e.g.,

Ãn5
Ap

2p\

~ i e!n

n!
n21/2H 1

2
@11erf~vt !#J n

.

Since the expression in the large parentheses goes smo
from 0 at t52` to 1 at t5`, we see that the replaceme
manifolds emerge even before the center of the impurity
encountered. However, the weight of the manifolds w
larger n becomes appreciable only after the impurity
passed.

VI. DISCUSSION AND CONCLUSIONS

We have shown that the RM method is not limited
infinitely repeating phase-space structures if we allow
replacement manifolds to have complex momenta. Propa
tion of replacement manifolds gives uniform semiclassi
01621
s

-
.
d

hly

is

e
a-
l

wave functions long after the primitive semiclassical a
proximation breaks down.

Putting aside the accuracy, the RM approach may se
intimidating from a numerical point of view because as d
scribed, the algorithm has exponential complexity. But
us remember that the same—exponential proliferation
contributions—is true of the primitive semiclassical soluti
which, however, would give a completely wrong result in o
case! Moreover, there appear to be at least two possible w
to speed up the RM calculations. Fore,1 , we could prune
the contributions to keep only terms up to a certain ‘‘tota
power ofe ~which is different from keeping all terms up to
given power at each impurity!. Or we could consolidate the
number of wave packets after certain time by projecting o
suitable basis~because the exponentially growing number
RM terms is obviously over complete! and starting the RM
propagation afresh.

The question of computational complexity would n
even arise if we were interested in a system where the e
tron wave hits only one or a few impurities and after th
propagates in a relatively smooth potential. The small nu
ber of Gaussian wave packets spawned at the last impu
would suffice for all subsequent times and the accuracy
the approximation would be preserved. As discussed in S
III, this should be contrasted with the standard SC appro
mation which deteriorates even when a manifold with
single cusp propagates in a flat potential~see Fig. 3!.

Besides providing a uniform wave function the R
method gives an intuitive explanation of how quantum m
chanics smooths out the classical detail. Moreover, in
present case of RMs with a complex momentum, the met
appears to provide a link between the semiclassical pertu
tion approximations@21# and various Gaussian wave pack
techniques@22–24#, because replacement manifolds in t
expansion~19! are nothing but Gaussian wave packets. O
advantage of the RM method over other Gaussian wa
packet methods lies in that it gives an analytic expression
the coefficients of the wave packets. Other Gaussian w
packet methods~such as the frozen Gaussians@22#, the
Herman-Kluk propagator@23#, and the full multiple spawn-
ing @24#! rely on variational orad hoc methods to obtain
optimal wave packet coefficients numerically.

Finally, although the RM method has not yet been fu
generalized, the large variety of problems~in this paper and
in Ref. @16#! it can solve suggests that the method~or at
least,the idea! is more general.
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APPENDIX: REPLACEMENT-MANIFOLD EXPANSION
IN AN ARBITRARILY ROTATED

COORDINATE SYSTEM

We show here that the RM expansion for the manifo
studied in this paper can be found analytically in an ar
1-7
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trarily rotated coordinate system. In other words, the met
can be readily applied not just in theq or p representations
but in any mixed representation given by a canonical tra
formation ~see Fig. 7!

Q5q cosf1p sinf,

P52q sinf1p cosf. ~A1!

In the original coordinate system (q, p), replacement
manifolds are straight lines

pn~q!52in\q5q tanan ~A2!

~wherean is complex!. In the rotated coordinates (Q, P),
the replacement manifolds are given by the relationship

Pn~Q!5Q tan~an2f!5Q
2in\2tanf

112in\ tanf
. ~A3!

FIG. 7. Original and rotated coordinate systems.
.
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The reduced action is

Sn~Q!5E dQ Pn~Q!5
1

2
Q2 tan~an2f!. ~A4!

The weight of thenth RM in the Q representation is the
weight in theq representation multiplied by the ratios of th
projections on theq andQ axes, respectively. Including th
Maslov indexm ~0 or 1!, we find the correctnth RM contri-
bution

cRM,n~Q!5
1

A2p\

~ i e!n

n! U cosan

cos~an2f!
U1/2

3expF i

2\
Q2 tan~an2f!2 imnp/2G .

~A5!

After simplification, the full RM expansion becomes

cRM~Q!5 (
n50

`

cRM,n~Q!5
1

A2p\
(
n50

`
~ i e!n

n!
ucosf

12in\ sinfu21/2 expS 2Q2
n1 i tanf/~2\!

112in\ tanf

2 imnp/2D . ~A6!

It is easy to check that this general result correctly reduce
expressions~11! or ~19! whenf5p/2 or f50, respectively.
ev.
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